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Introduction

The p-adic comparison theorems (or the p-adic periods isomorphisms) are

isomorphisms, analog to the \complex periods isomorphism"

H

i

dR

(X=C )

�

=

H

i

(X(C );Q) 
 C

for a smooth and projective variety over C , between the p-adic cohomology

and the de Rham cohomology (plus some additional structure) of smooth

and projective varieties over a �nite extension of Q

p

.

The theory started with the work of Tate [Ta] and Fontaine [Fo1] on

abelian varieties and p-divisible groups, and continues with the work of

Fontaine, Bloch, Kato, Messing, Faltings, Hyodo, Tsuji, Breuil and others.

1 Brief review of Hodge theory

We will consider only algebraic varieties that are smooth an projective; of

course, Hodge theory can be used for all algebraic varieties (and also for more

general complex varieties). Consider X an smooth and projective variety

over the complex numbers C . We have then the so called singular or Betti

cohomology H

i

(X(Z);Z), which are �nitely generated Z-modules, and equal

to zero for i < 0 and i > 2 dim(X) = 2d. On the other hand, we have de

Rham cohomology H

i

dR

(X(C )=C ), which are complex vector spaces and, as

before, equal to zero for i < 0 and i > 2d. What is the relation between this

to objects? The answer is given by de Rham theorem.

Theorem 1 (de Rham) There exist a natural and canonical isomorphism

H

i

(X(C ); C ) := H

i

(X(C );Z)


Z

C

�

=

H

i

dR

(X(C )=C )
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In fact, the isomorphism goes as follows: By Poincare duality, we have

that

Hom

C

(H

2d�i

(X(C ); C ); C )

�

=

H

i

(X(C ); C ):

Now, we have a periods pairing de�ned by

H

i

dR

(X(C )=C ) �H

2d�i

(X(C ); C ) �! C

(!;�) 7!

Z

�

!

where � is a cicle, ! a di�erential form and

R

�

! means the integral along �.

Now, the next step in Hodge theory is the Hodge theorem. Recall that

de Rham cohomology H

i

dR

(X(C )=C ) is formed by classes of forms, and that

forms can be of type (p; q) with p + q = i. Denote by H

p;q

(X) the subspace

of (p; q)-forms.

Theorem 2 (Hodge) We have a canonical decomposition

H

i

dR

(X(C )=C ) =

M

p+q=i

H

p;q

(X);

and H

p;q

(X) = H

q;p

(X), where H means complex conjugation.

And have also Dolbeault's theorem.

Theorem 3 (Dolbeault) We have a canonical and functorial isomorphism

H

p;q

(X)

�

=

H

p

(X(C );


q

)

where 


q

=

V

q




1

, and 


1

is the sheaf of holomorphic di�erential forms.

Now, by using the GAGA theorems, one can show that

H

i

dR

(X=C )

�

=

H

i

dR

(X(C )=C ) and H

p

(X;


q

)

�

=

H

p

(X(C );


q

);

where 


1

is the sheaf of algebraic di�erential forms, 


i

:=

V

i




1

, 


�

is the

usual de Rham complex and H

i

dR

(X=C ) is the hypercohomology of the de

Rham complex.

All this results can be then be write as:

H

i

(X; C )

(1)

�

=

H

i

dR

(X=C )

(2)

�

=

M

p+q=i

H

p

(X;


q

): (*)
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Our �rst question is now: at what extend can this results be true on other

type of �elds K?

Observe that the second isomorphism (2) in (*) can be extended to other

�elds in the following form. Recall that (algebraic) de Rham cohomology is

the hypercohomology of the de Rham complex 


�

X=K

, which can be de�ned

for any variety over a �eld (or, more generally, over any scheme). So, we

have a natural spectral sequence (the so-called second spectral sequence of

hypercohomology)

E

q;p

1

= H

p

(X;


q

X=K

) =) H

p+q

dR

(X=K):

Now, this spectral sequence gives us a way to �nd a relation betweenH

i

dR

(X=K)

and H

p

(X;


q

X=K

).

Theorem 4 Let K be a �eld of characteristic zero. Let X be a smooth and

projective variety over K. Then the spectral sequence

E

q;p

1

= H

p

(X;


q

X=K

) =) H

p+q

dR

(X=K):

degenerates at E

1

, and thus we have a natural �ltration (so called Hodge

�ltration) Fil

q

(H

dR

(X=K)) with graduate quotients

Fil

q

(H

i

dR

(X=K))=Fil

q+1

(H

i

dR

(X=K))

�

=

H

q�i

(X;


q

X=K

)

One can think that this result gives us a non-canonical isomorphism

H

i

dR

(X=K)

�

=

M

p+q=i

H

p

(X;


q

X=K

) =: H

i

Hod

(X=K):

The idea of the proof is to reduce to the case of a �nitely generated

extension of Q, and then reduce to the case of complex numbers.

There is also a purely \algebraic" proof of this result by Deligne and

Illusie using cristalline cohomology techniques (see [De-Il]).

Observe also that this result is not true in general in characteristic p > 0,

see for example [De-Il].

Now, to obtain an analog (if exists) of the �rst isomorphism, we need

to know what's the precise analog of the Betti cohomology. Of course, this

cannot be done over a general �eld. So, we restrict ourselves to p-adic �elds.

2 p-adic cohomology over p-adic �elds.

From now on, let K be a �nite extension of Q

p

, and X be an smooth and

projective variety over K. Consider also K an algebraic closure of K and
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C :=

b

K the completion of K; C is then algebraically closed and complete

with respect to an absolute value that extents the p-adic absolute value.

Denote also by O

K

the ring of integers of K and by k the residue �eld.

The �eld C can be think as an analog of C ; in fact, it does not depend

of the �eld K, just depends on p. Some people call it C

p

.

To obtain analogs of the classical Hodge theory, we need a cohomology

that behaves like the Betti cohomology (with coe�cients in C ), but with

coe�cients in our �eld. The natural one to consider is the p-adic cohomology:

H

i

(X;Q

p

) := (lim

 

H

i

(X

�et

;Z=p

n

Z))


Z

p

Q

p

:

where X denotes as usual X 


K

K,

Then, we can obtain, by tensoring with K or with C, K- or C-vector

spaces. Observe that this cohomology has the \right" dimension, since, if we

choose any embedding � of K into C (there are always such embeddings),

we have a comparison theorem (Grothendieck)

H

i

(�(X)(C );Z)


Z

Q

p

�

=

H

i

(X;Q

p

)

as Q

p

-vector spaces.

But we have now a new ingredient: this vector spaces have a natural

action of the absolute Galois group G

K

of K. Our objective will be to

compare this cohomology groups (with the G

K

-action) with the de Rham

cohomology groups (plus some additional structures). Observe that both

cohomology groups have the same dimension as K-vector spaces (use the

comparison theorem I just wrote), so they are isomorphic (as vector spaces);

but we would like to have a \canonical" isomorphism; and we would like also

that the Galois action plays some role.

3 The Hodge-Tate comparison theorem

The �rst step to obtain a p-adic Hodge theory was made by J. Tate in 1967

[Ta]. Tate showed, by working with p-divisible groups, that, if A is an abelian

variety over K which have good reduction over K, then we have a natural

isomorphism

H

1

(A;Q

p

)


Q

p

C

�

=

(H

1

(A;


0

A=K

)


K

C(�1))� (H

0

(A;


1

A=K

)


K

C)

respecting the Galois action of G

K

, where C(�1) = C 
Q

p

(�1) is the Tate

twist, and the Galois group G

K

acts on C in the natural way.

Tate formulated the conjecture that this result should be true for all

smooth and projective varieties. This conjecture is now a theorem.
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Theorem 5 (Faltings) For all varieties X smooth and projective over K we

have a canonical isomorphism

H

i

(X;Q

p

)


Q

p

C

�

=

M

p+q=i

�

H

p

(X;


q

X=K

)


K

C(�p)

�

respecting the action of G

K

.

This theorem was proved by S. Bloch and K. Kato in the case when X

has ordinary good reduction and is of dimension < p, and by G. Faltings

([Fa1]) in full generality, and it is also a consequence of the results we are

going to explain.

One way to write this theorem, which resembles the way this result has

been generalized, is by saying that there is a natural isomorphism

H

i

(X;Q

p

)


Q

p

B

HT

�

=

H

i

Hod

(X=K) 


K

B

HT

;

where B

HT

(Hodge-Tate) is the ring

B

HT

:= �

j2Z

C(j);

with the natural action of G

K

(acting on both sides of C(j) := C


Z

p

Z

p

)(j)).

Observe that we have gone directly from the �rst term in (�) to the last

term in (�) (plus the fact that we have a Galois action).

4 The de Rham comparison theorem: B

dR

It is natural to ask now if we have a canonical isomorphism of H

i

(X;Q

p

)


Q

p

C

with the de Rham cohomology over C. Of course, as I said before, we have

an isomorphism because both are vector spaces over the same �eld and with

the same dimension. But we want it canonical and we like to have some

information of the Galois action. The fact is that we have not! And the

reason is that we do not have su�ciently many \periods". Let's see this in

the following example.

Example 6 Consider the variety X := G

m

= Spec(K[Z; 1=Z]); this is an

smooth variety, but not projective. So is not an example of the type of vari-

eties we are interested in, but still we can see some idea of what's going on.

Fix p a prime number.

Let's consider the periods pairing over C , that we will compute in a par-

ticular way, suitable to be generalized to p-adic numbers. It works as follows:
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�

n

10

6

given the element

dZ

Z

2 H

0

(X;


1

X=C

) (which generates the invariant di�eren-

tials) and a generator  2 H

1

(X;Z)

�

=

Z (the circle of radius 1 around 0),

we associate

Z



w =

Z



dZ

Z

= p

n

Z

�

n

1

dZ

Z

= p

n

Z

2�=p

n

0

de

i�

e

i�

= 2i�

where �

n

:= e

2�i

p

n

is a p

n

-root of unity.

Now, over K, the natural substitute for H

1

(X;Z) is the Tate module

T

p

(G

m

) = Z

p

(1), generated by an element of the form e� := (�

n

)

n

, where

�

n

2 K veri�es �

p

n

= �

n�1

for all n > 1, �

p

1

= 1 and �

1

6= 1. Now

Z

e�

1

dZ

Z

= p

n

Z

�

n

1

dZ

Z

= p

n

log

p

(�

n

) = log

p

(�

p

n

n

) = log

p

(1) = 0;

for any "natural" de�nition of the integral (for example, for the integral de-

�ned by Coleman [C-I] or Colmez [Co]).

You can think that the problem is that the p-adic logarithm is not mul-

tivalued. Or you can think that we want an analog of 2�i: log(b�).

The following naive idea does not work completely but it goes in the good

direction: consider the �eld of fractions of the formal powers series of log(b�)

with coe�cients in C: C((log(b�))).

We have a natural action of G

K

: we can de�ne the action to be the

natural one on C and the cyclotomic on log(b�), i.e. g(log(b�)) = �(g)log(b�),

where " : G

K

! Z

�

is the p-adic cyclotomic character. Then you get B

HT

and we know it works only with the Hodge cohomology. In some sense, what

we need is a ring where the �ltration is not trivially split.
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The good idea goes in a di�erent direction. Let O be the ring of integers

of C: is the ring of elements with absolute value less than or equal to 1; it is

a local ring with residue �eld isomorphic to an algebraic closure of k.

Consider now the category of "formal p-adic pro-in�nitesimal coverings"

of O; it is formed by objects of the form f� : V �! Og where V is an

O-module, � a surjective morphism of O-modules and V is complete with

respect to Ker(�) and with respect to p.

Now, this category has an initial object, that is a universal formal p-adic

pro-in�nitesimal covering, called A

inf

.

Claim 7 Consider the ring

R

O

:= lim

 

(O=pO  O=pO  � � � );

where the maps O=pO ! O=pO are a 7! a

p

; it is a ring of characteristic

p, so we can apply the Witt construction to get a ring of characteristic zero.

Then

A

inf

= W (R

O

) :

For a proof, see [Fo2] 1.2.

Now, we have a natural map � : A

inf

! O, hence a natural map

�

K

: A

inf




O

K �! C

Consider J

K

:= Ker(�

K

) and de�ne B

+

dR

as the completion of A

inf




O

K with

respect to the ideal J

K

. Finally, let B

dR

be the �eld of fractions of B

+

dR

. We

have then the following properties (see [Fo2]).

Properties 8 1. B

+

dR

is a complete discrete valuation ring, with maximal

ideal J

K

and residue �eld C.

2. B

+

dR

has a natural continue action of G

K

, and B

G

K

dR

= K.

3. Consider an element e� = (�

n

)

n

of Z

p

(1) as before. Consider a

n

2 A

inf

such that �(a

n

) = �

n

. Then

�(�) := lim

n!1

a

p

n

n

exists and �(�(�)) = 1, so �(�)� 1 2 J

K

. Hence, we have

log(�(�)) :=

X

m�1

(�(�)� 1)

m

m

2 B

+

dR

;
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which is a uniformizer of B

+

dR

if e� is a basis and gives an inclusion

respecting the action of G

K

log �� : Z

p

(1) ,! B

+

dR

:

We will denote by t this uniformizer in B

+

dR

.

4. B

dR

has a natural �ltration given by the valuation

Fil

m

B

dR

:= f b 2 B

dR

k v(b) � m g

and the graduate quocients are isomorphic to C(�m):

gr

m

B

dR

= Fil

m

B

dR

=Fil

m+1

B

dR

�

=

C(�m):

Now, the p-adic de Rham comparison theorem says that this �eld is the

one we need for the comparison with de Rham cohomology.

Theorem 9 Let X be a smooth and projective algebraic variety over a p-adic

�eld K. Then, we have a canonical isomorphism

C

dR

: H

i

(X;Q

p

)


Q

p

B

dR

�

=

H

i

dR

(X=K) 


K

B

dR

;

verifying that

1. It is compatible with the action of G

K

given at the left hand side by

� 
 � and on the right hand side by id
 �.

2. It is compatible with the �ltration given at the left hand side by id 


Fil

q

and on the right hand side by

P

a+b=q

Fil

a


Fil

b

(the convolution

�ltration). (recall that the �ltration on the de Rham cohomology is the

de Rham �ltration given by the Hodge spectral sequence.)

3. It is compatible with Poincar�e duality, K�unneth formula, cicle map and

Chern class maps.

This theorem was proved by Faltings in 1988 ([Fa2]), and it is also a

consequence of more general theorems, like C

st

(Tsuji's theorem [Ts]) plus

the theory of de Jong alterations (see section 8).

As a consequence, we can recover H

i

dR

(X=K) with it's �ltration from the

p-adic cohomology, since we have that

�

H

i

(X;Q

p

)


Q

p

B

dR

�

G

K

�

=

H

n

dR

(X=K):

Now, it is natural to ask if it is possible to recover the p-adic cohomology

of X from the de Rham cohomology of X plus some data; this is what we

are going to explain in the next sections. This problem in fact has its origins

in the so-called "mysterious functor".
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5 The Grothendieck mysterious functor

This history begins probably with J. Tate's paper that we already mentioned

[Ta]: Tate studies there abelian varieties with good reduction and also p-

divisible groups over O

K

. He proves that the p-divisible group associated to

an abelian scheme A (the smooth and proper model over O

K

of an abelian

variety A over K of good reduction) it is determined modulo isogeny by one

of this two objects:

1. The Tate module V

p

(A) := T

p

(A) 


Z

p

Q

p

of A, which is a Q

p

-vector

space of dimension 2 dim(A) with an action of G

K

.

2. The Dieudonn�e module D(A

k

) of the reduction of A, which is a K

0

-

vector space of dimension 2 dim(A) with a �-linear isomorphism ' and

a two steps �ltration.

(K

0

means as usual the �eld of fractions of the Witt ring W (k) of the residue

�eld k.)

Grothendieck suggested then the following question: Is there an \alge-

braic" functor D that associates to every p-adic representation a K

0

-vector

space endowed with a �-linear isomorphism, and such that, for any good

reduction abelian variety A,

D(T

p

(A))

�

=

D(A

k

) ?

And, viceversa, is there a functor on the other direction?

First thing we can do before answering this question is to generalize it

to all varieties X with good reduction. In this case we have the p-adic

cohomology in one side and the crystalline cohomology of the reduction on

the other side.

Given a good reduction variety (smooth and projective) X over K, �x X

a smooth and proper model of X over O

K

and denote by Y its reduction to

k. The variety Y is smooth and proper, so we can construct its crystalline

cohomology H

i

cris

(Y=W ) and

H

i

cris

(Y=K

0

) := H

i

cris

(Y=W ) 


W

K

0

:

It is a K

0

-vector space endowed with a �-linear isomorphism ', and such

that we have a canonical isomorphism

H

i

cris

(Y=K

0

)


K

0

K

�

=

H

i

dR

(Y=K):

So, we can think that the crystalline cohomology is a way to de�ne a Frobe-

nius in the de Rham cohomology (plus a K

0

-vector space structure).
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So the question of Grothendieck can be generalize to the conjecture: The

p-adic cohomology of a good reduction variety determines the crystalline

cohomology of the reduction (plus the �ltration when tensored by K) and

viceversa.

This conjecture was made precise by Fontaine in [Fo1] by the construction

of a ring of p-adic periods (or Barsotti-Tate ring) similar to the B

dR

: B

cris

.

6 The crystalline comparison theorem: B

cris

Fontaine's idea was to construct a �eld B

cris

such that has all the structures

we want: it is a Q

p

-vector space with an action of G

K

such that B

G

K

cris

= K

0

and it is a K

0

-vector space (K

0

-structure given by B

G

K

cris

= K

0

) with a �-linear

endomorphism

' : B

cris

�! B

cris

and having a natural K-morphism

B

cris




K

0

K ,! B

dR

and hence endowing B

cris




K

0

K with a �ltration, verifying that

Q

p

�

=

B

'=1

cris

\ Fil

0

(B

cris




K

0

K) :

Then, the functor we are looking for is, for any p-adic representation V ,

D

cris

(V ) := (V 


Q

p

B

cris

)

G

K

with quasi-inverse

V

cris

(D) := (D 


K

0

B

cris

)

'=1

\ Fil

0

((D 


K

0

K)
 (B

cris




K

0

K))

for any K

0

-vector space D with a Frobenius and a �ltration when tensored

by K (called a �ltered '-module).

How this B

cris

can be de�ned? There are two equivalent ways:

1. As before with the B

dR

, but using the \universal p-adic formal DP-

covering": i.e. A

cris

:= W

DP

(R

O

) (the p-adic completion of the di-

vided power envelope of W (R

O

)), B

+

cris

:= A

cris

[1=p], and B

cris

�eld of

fractions of B

+

cris

.

2. By using crystalline cohomology:

B

+

cris

:=

�

lim

 

H

0

cris

(Spec(O

K

=pO

K

)=W

n

)

�




W

K

0

10



The Frobenius element comes then from the Frobenius in the crystalline

cohomology; the action of G

K

comes from O

K

; and the map to B

dR

from the

comparison between the de Rham and crystalline cohomology.

We have also that the element t := log(b�) belongs naturally to B

+

cris

, so

we have an inclusion Q

p

(1) ,! B

+

cris

. Then B

cris

= B

cris

[1=t].

Now, the \Grothendieck mysterious functor problem" is made precise by

the following theorem.

Theorem 10 (Fontaine, Messing, Faltings, Kato, Tsuji) Let X be a smooth

and projective variety over K with good reduction. Let Y be the reduction of

(a model of) X. Then, there is a natural isomorphism

C

cris

: H

i

(X;Q

p

)


Q

p

B

cris

�

=

H

i

cris

(Y=K

0

)


K

0

B

cris

compatible with the action of G

K

, the Frobenius, the Filtration (and Poincar�e

duality, K�unneth formula, cycle and Chern class maps).

Corollary 11 We have natural isomorphisms

D

cris

(H

i

(X;Q

p

))

�

=

H

i

cris

(Y=K

0

) and V

cris

(H

i

cris

(Y=K

0

))

�

=

H

i

(X;Q

p

)

This result implies that the p-adic cohomology of a good reduction variety

is \crystalline", in the sense that

dim

Q

p

(V ) = dim

K

0

(D

cris

(V )):

This theorem was proved by Faltings in [Fa2], by Fontaine and Messing

in [F-M] when the dimension of X is strictly less than p and K = K

0

, by

Kato and Messing in [K-M] when 2 dim(X) < p� 1 , and it is a consequence

of the work of Tsuji [Ts].

7 Some words around the proof of C

cris

7.1 Faltings approach

Faltings proof [Fa2] of the crystalline comparison theorem uses his theory

of almost �etale extensions. He de�nes for every X over O

K

a situs

e

X and

sheaves Z=p

m


B

+

=I

[n]

for all n;m (B

+

should be think as a shea�cation of

B

+

cris

). He de�nes

H

i

(

b

X;B

^

) :=

�

lim

 �

n

lim

 �

m

H

i

(

e

X;Z=p

m


B

+

=I

[n]

)

�

[1=p; 1=t]

11



(where t is a special element there, which corresponds to "our" t := log(b�))),

and he proves that there is an isomorphism

H

i

(X;Q

p

)


Q

p

B

cris

�

=

H

i

(

b

X;B

^

)

compatible with all the structures.

After this, he constructs a natural transformation

H

i

cris

(Y=K

0

)


K

0

B

cris

�! H

i

(

b

X;B

^

)

also compatible with all the structures.

From this one gets a map

H

i

cris

(Y=K

0

)


K

0

B

cris

�! H

i

(X;Q

p

)


Q

p

B

cris

compatible with all the structures. One shows that this map is also compat-

ible with Poincar�e duality and with cycle class maps and Chern class maps.

Once this is shown, the isomorphism is deduced easily.

7.2 Fontaine-Kato-Messing approach

Fontaine and Messing proof of the theorem [F-M] is by using the so-called

syntomic cohomology. They construct complexes of sheaves for the syntomic

topology S

r

n;X

for every r and n, as well as complex of sheaves s

n;X

(r) in the

derived category D(X

et

;Z=p

n

Z) if 0 � r < p. Then one shows that

H

i

(X �

O

K

O

K

; s

n

(r))

�

=

H

i

(X;Z=p

n

Z)

if i � r < p, by a delicate study of the p-adic vanishing cycles.

Now, by using the crystalline interpretation of B

cris

, one gets maps

H

i

(X �

O

K

O

K

; s

n

(r)) �! H

i

((X �

O

K

O

K

=p

n

)=W

n

)

'=p

r

By taking Q 
 lim

 �

n

, one �nally get maps

H

i

(X;Q

p

) �! (H

i

cris

(Y=K

0

)


K

0

B

cris

)

'=1

for any i < p� 1 (and independent of the auxiliary r, i � r < p� 1).

One shows that this maps are compatible with the Chern class of line

bundles and the isomorphism when 2d < p � 1 is obtained. To obtain the

proof in general one can do a \modi�cation" like in Tsuji's proof (see section

9).
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8 Semi-stable reduction and log-crystalline

cohomology

Suppose now we have an smooth and projective variety X which does not

have good reduction, but it has semi-stable reduction; that is, there exists

a proper model X over O

K

such that locally for the �etale topology is of the

form O

K

[t

1

; : : : ; t

n

]=(t

1

: : : t

r

� �), where as usual � denotes a uniformizer of

O

K

.

In this case Jannsen conjectured (by analogy with the `-adic cohomol-

ogy, ` 6= p) the existence of K

0

-estructure on the de Rham cohomology of

X, with a Frobenius and a nilpotent map N , the monodromy. This map

should be think also as an analog of the residue of the Gauss-Manin con-

nection. The existence of this structure was shown by Hyodo and Kato (see

[H-K]) by constructing the log-crystalline cohomology, which is some sort

of crystalline cohomology with logarithmic poles (i.e. for log-schemes). We

will denote by H

i

log-cris

(X ) the log-crystalline cohomology of the reduction of

X as log-scheme with the canonical log-structure, and with respect to the

canonical log-structure on k (sometimes called Hyodo-Kato cohomology); it

is a K

0

-vector space, with a �-linear isomorphism ' (the Frobenius), a nilpo-

tent endomorphism N (the monodromy) verifying N' = p'N , and with an

isomorphism

�

�

: H

i

log-cris

(X )


K

0

K

�

=

H

i

dR

(X=K)

that depends on the choice of a uniformizer� ofO

K

(see [H-K]). So H

i

log-cris

(X )

is a �ltered (';N)-module.

On the other hand, he and Fontaine conjectured the existence of a ring

of periods B

st

giving a comparison isomorphism between this log-crystalline

cohomology and the p-adic cohomology. Before stating the theorem, let's

describe an example.

Example 12 Let E be the Tate elliptic curve G

m

=�

Z

, where � is the uni-

formizer of O

K

. Now, E has semi-stable reduction and there is a map (as

rigid-analytic varieties) G

m

! E. The invariant di�erential dZ=Z gives then

a di�erential ! 2 H

1

dR

(E=K).

On the other hand, the Tate module T

p

(E) is generated (as Z

p

-module)

by two elements: � = (�

n

)

n

as before and g = (g

n

)

n

, where g

p

n

= g

n�1

for all

n > 0 and g

0

= �.

Now, the de Rham periods paring

h ; i : H

1

dR

(E=K)� T

p

(E) �! B

dR

is done by

h!; �i = log(�(�))
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and

h!; gi = log(b)

where

b := lim

n!1

b

p

n

n

and �(b

n

) = g

n

(log is the unique extension of the logarithm that veri�es log(�) = 0).

See the paper [C-I] of Coleman and Iovita for details.

So, since we want the \periods" coming from semi-stable varieties, we

need this element u := log(b). De�ne

B

st

:= B

cris

[u]

(where u is a variable), with maps N : B

st

! B

st

the B

cris

-derivation which

is 0 on B

cris

and N(u) = 1, and ' : B

st

! B

st

which is the Frobenius on

B

cris

and '(u) = pu. Finally de�ne a map

K 


K

0

B

st

�! B

dR

given by sending u to log(b). Observe that this last map depends on �!

Theorem 13 (Kato,Tsuji,Faltings) Let X be a smooth projective variety

over K with semi-stable reduction. There exist a natural isomorphism

C

st

: B

st




Q

p

H

i

(X;Q

p

)

�

=

B

st




K

0

H

i

log-cris

(X )

compatible with ', N and G

K

, and compatible with �ltrations after B

dR




B

st

�.

Furthermore, the isomorphism is compatible with Poincar�e duality, cycle

map and Chern class maps.

This theorem was proved by K. Kato in [Ka] in the case that 2d < p� 1,

by T. Tsuji [Ts] in general and by G. Faltings in [Fa3] including the case of

non-constant coe�cients; also C. Breuil has a partial result in the cases of

p-torsion �etale cohomology [Br].

Before giving some ideas of the proof, we will explain some consequences

of this result.

Corollary 14 H

i

(X;Q

p

) is a semi-stable representation, an one has that

D

st

(H

i

(X;Q

p

))) =

�

B

st




K

0

H

i

log-cris

(X )

�

Corollary 15 Let X be a proper and smooth variety overK. Then H

i

(X;Q

p

)

is a potentially semi-stable representation of G

K

.
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Proof. (Idea) We can suppose that X is geometrically irreducible. Then

there exist a �nite extension K

0

=K and an alteration X

0

! X

K

0

with X

0

semi-stable over O

K

0

. Now H

i

(X;Q

p

) � H

i

(X

0

;Q

p

) is a direct summand, so

it is semi-stable as G

K

0

-representation.

There is also some generalizations. For example, T. Tsuji has generalized

this result to simplicials schemes, hence deducing the result for any proper

variety (which may have singularities).

Theorem 16 Let X be a proper scheme over K. Then H

i

(X;Q

p

) is poten-

tially semi-stable.

The proof of this result is publish in [Ts2].

9 Some words around the proof of C

st

The approach of Tsuji works similarily that for the proof of C

cris

, but replac-

ing the syntomic cohomology by the log-syntomic cohomology. Essentially,

the idea is to use the "cohomology of log-syntomic complexes" as a link

between H

i

(X;Q

p

) and H

i

log-cris

(X ). Suppose we have

H

i

(X;Q

p

)

�

 � Q

p

(�r)
H

i

(X ; s

Q

p

(r)) �! (B

st




K

0

H

i

log-cris

(X )

N=0;'=1

:

One gets then by adjuntion a map

B

st




Q

p

H

i

(X;Q

p

) �! B

st




K

0

H

i

log-cris

(X ):

If one shows that this map is compatible with Poincar�e duality and Chern

class maps, then this map is an isomorphism. Finally, one only need to verify

the compatibility with the �ltrations.

Tsuji's idea was, instead of considering the syntomic complexes of sheaves

S

log

n

(r) (the logarithmic versions of Fontaine and Messing approach), to con-

sider some \modi�cations"

e

S

n

(r) and then de�ne

H

i

(X ; s

Q

p

(r)) := Q

p




�

lim

 

H

i

(X

n

;

e

S

n

(r))

�

:

Now, by the log-crystalline interpretation of B

st

in Kato's paper [Ka], one

has a natural map

H

i

(X ; s

Q

p

(r)) �!

�

B

st




K

0

H

i

log�crys

(X )

�

N=0;'=p

r

:

(it is a kind of K�unneth formula).
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Next, if 0 � i � r, Tsuji de�nes maps

H

i

(

e

S

n

(r)) �!

�

i

�

R

i

�

j

�

(Z=p

n

Z)

0

(r)

where

�

i : Y ! X and

�

j : X ! X as usual, and

(Z=p

n

Z)

0

=

1

p

a

a!

Z

p

(r)
Z=p

n

Z;

where a := d

r

p�1

e.

By studying in detail the vanishing cycles (done by Bloch and Kato (in

the good reduction case) and by Hyodo) and using some results of Kurihara,

one shows that this maps have kernel and cokernel killed by some power of

p, independent of n. One gets then the desired isomorphism

H

i

(X;Q

p

(r))

�

 � H

i

(X ; s

Q

p

(r))

for i � r, by using the proper base change theorem.
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